Salamander 3 now in open beta

Salamander 3, a new structural modelling and interoperability tool developed by RCD lead Paul Jeffries, is now in open beta and available to download from Food4Rhino.  The tool adds the ability to model structural elements such as beams, slabs, nodes etc. inside Rhino and for this data to be exchanged with analysis packages (at present, Autodesk Robot and Oasys GSA).

The tutorial videos below demonstrate how to install the Rhino plugin and utilise some of the basic modelling commands in the tool to develop a simple structure.

 

Ramboll Leadership Conference 2017 Bridge

For the 2017 Ramboll Leadership Conference in Copenhagen, which took place on the 22nd and 23rd of January, RCD was involved in a collaboration between the Transport and Buildings departments to design and construct a ‘bridge’ installation between their respective stands.  We had a little over a month to develop and manufacture the design so timescales were tight and we had several key criteria to consider – the bridge was to support a model train running between the two stands (in reference to the Holmestrand Mountain Station project), it needed to be light and easily demountable enough for us to carry from London to Copenhagen, build in an afternoon, break down in an hour and then return back to London (for later re-assembly in our home office).  We also wanted it to form an interactive part of the conference rather than merely being a static display piece.

We approached the project the same way we would any other – pulling together a team with relevant expertise, brainstorming ideas, analysing and developing them.  For the interactive element, we realised that business cards made an ideal impromptu craft material and were one of the few things we could rely on most of the attendees to be bringing with them.  The decision was thus made to allow people at the conference to leave their business card, folded into a specific 3D form, as part of the bridge’s cladding.

Business card origami tests
Business card origami tests
Initial bridge form brainstorming
Initial bridge form brainstorming

Design of the overall structure progressed rapidly through several meetings, based around a flexible parametric Grasshopper model developed by RCD that allowed for collaboration around real-time adjustments to the geometry.  After the examination of several options we settled on a timber shell/arch structure as an aesthetically pleasing, lightweight, robust solution that would reference both Ramboll UK’s expertise in timber structures and previous RCD project the TRADA pavillion and which could be rapidly manufactured and assembled.

Parametric bridge model (click to view animation)
Simplified parametric bridge model (click to view animation)
MIDAS analysis model
MIDAS analysis model

Throughout the development of the bridge the geometry was exported to and analysed in MIDAS by the London Bridges team in order to make sure the design was structurally feasible and to guide further refinement of the form and material thicknesses.  Additionally preliminary samples of sections of the bridge were laser cut to allow us to physically examine and test the manufacturing process and connection detail design.

Rigorous scientific testing
Rigorous scientific testing

In order to enable the bridge to be rapidly assembled and disassembled we wanted to avoid the use of adhesives or mechanical fixings.  The connections were therefore designed as simple slotted plates, held in place laterally by a matching slot in one of the plates they joined and restrained laterally by small standard ‘U’-shaped clips, all cut from the same 6mm plywood as the rest of the structure.  The nature of the shell form meant that the angle between each panel (per quarter of the structure) was different.  Generation of these connector pieces was thus integrated into the Grasshopper model in order to determine cutting patterns for each connector and panel, each of which was also automatically labelled with a number to be engraved onto the inner side of each piece to allow easy identification of which pieces connected together during construction.  Each connector also incorporated a small hole through which the line which would support the bridge deck could be passed.

Connection plates in the laser cutter
Connection plates in the laser cutter

The slots into which business cards could be placed were likewise incorporated into the Grasshopper model, arranged so as to fit in the maximum amount of business cards without compromising the structural integrity of the panels.  Due to the variety of panel shapes and sizes no one placement algorithm was found to give consistently good results, consequently two separate arrangement algorithms were utilised to determine slot placement and the best of the two automatically selected for each panel to give the final arrangement.

The complete parametric model
The complete parametric model
The foundations
The foundations

Foundation design is a key component of any project and this one was no different.  Two pedestals were designed to support the feet of the bridge.  As an arch, the natural reaction of the structure under load was to try and push outwards.  To resist these thrusts without having to tie the base of the arch together or carry over heavy weights in our luggage, these pedestals contained hidden compartments to conceal bottles of water which were procured on-site and provided the necessary ballast.

Train assembly
Train assembly
20170123_080201
The hacked controller

This being a conference for engineers in Denmark, it was a foregone conclusion that the train the bridge would carry should be made out of LEGO.  The train in question came with a seven-speed remote control, however to avoid having to manually drive the train for two days straight it also fell to RCD to automate this by hacking the controller.  The rotary dial which controlled the train’s speed produced different signals when turned clockwise or anticlockwise – instructing the train to accelerate and decelerate.  By hooking up these contacts to an Arduino Uno board programmed to mimic these impulse patterns it was possible to control the train’s movements programmatically and have it moving backwards and forwards across the bridge without human intervention.  Unfortunately several key wires were damaged in transit, requiring some frantic (but ultimately successful) repair work with a borrowed soldering iron the day before the conference.

Besides that, the bridge made it to Copenhagen without damage and was erected successfully at the conference.  It proved very popular with the conference attendees, becoming packed with business cards by the end of the second day and successfully demonstrating the capabilities of computational design and collaboration to the wider business.

Conference attendees add their business cards
Conference attendees add their business cards
The completed bridge, erected at the conference
The completed bridge, erected at the conference
The train
The train
Bridge construction
Bridge construction
The bridge design team, from left to right: Neophytos Yiannakou, Xavier Echegaray Jaile, Sarah Ord, Paul Jeffries, Ollie Wildman, Stuart Moore, Jonathan Louis
The bridge design team, from left to right: Neophytos Yiannakou, Xavier Echegaray Jaile, Sarah Ord, Paul Jeffries, Ollie Wildman, Stuart Moore, Jonathan Louis

“Our team was made up of people with different skills sets and backgrounds, who were unified by a desire to create something unique. The bridge was a success because all team members contributed their technical expertise, yet listened to and challenged each other to continually improve and refine the design.

This project shows that having the right mix of people with a passion for a common goal can generate great design in a short period of time.” – Sarah Ord, Project Manager

“The Transport and Buildings teams collaborated seamlessly, bringing our respective strengths together created a  more complete and superior design

“The use of parametric modelling and rapid prototyping and manufacture released the team’s time to concentrate on the creative design of the bridge through swift iterations. Designing and building the bridge in one month would not be possible without this approach” – Ollie Wildman, Director

“I worked on the structural analysis of the bridge ensuring that the design was robust enough to stand and carry the applied loads. It was great to have worked on such an innovative project and of course it could not have been done without this amazing and passionate team. Overall it was a brilliant experience and I am looking forward to work on similar stuff in the future!” – Neophytos Yiannakou, Bridge Engineer

“Parametric modelling has enabled quick optimisation and adjustment of the bridge geometry, making it easier to model and analyse. In a short period of time we were ready to print and test a first prototype, which has been key to meet the project deadline

“It has been a wonderful experience to design and actually build the bridge with such a diverse and motivated team. It is in projects like this where you realise the potential of combining different disciplines.” – Xavier Echegaray Jaile, Bridge Engineer

The complete bridge is now on display in the reception area of Ramboll’s London offices at 240 Blackfriars Road.

 

 

 

 

 

Parametric Engineering Course at Imperial College London

From January 2017, Imperial College London will be running an evening course on Parametric Engineering, co-taught by RCD lead Paul Jeffries.  The course will cover the application of Rhino and Grasshopper for computational design within an engineering context and is open to anybody in full time education or academic employment.  To apply contact Simply Rhino.

Henderson Colloquium

Building Structures Director Stephen Melville was recently invited to the Digital Design-themed Henderson Colloquium.

The aim of the annual event is to bring together a select group of industry experts to discuss a subject of topical importance with a view of making recommendations to the engineering and construction industry.

The invitation to attend the roundtable reflects the growing perception of Ramboll as digital design and thought leaders within this cutting-edge field. Other guests in attendance represented firms including Arup, Foster+Partners, Zaha Hadid Architects and Laing O’Rourke.

IABSE has held the two-day colloquium annually since it began in 1975. The event sees a specially invited group of invited guests taking part in a topical discussion of a structural engineering theme, with each participant making a presentation which is designed to stimulate a lively debate.

A summary of discussions and recommendations made for industry will be announced at the IABSE conference in Madrid this September. Whilst the recommendations are confidential until then, Ramboll’s involvement in the event (including a presentation on ‘Meta Parametric modelling’)  and debates demonstrate that our focus on importance of design using digital tools and strong philosophical approach to the subject position us as leaders in the rapidly evolving and specialised discipline.

Smartgeometry 2014

Kristjan Nielsen of the RCD team has recently returned from Hong Kong, where he helped run the SG2014 workshop cluster entitled: The Bearable Lightness of Being. The goal of the cluster was to design and construct a flexible, light-weight and optimised pavilion, through the use of grasshopper plug-ins Karamba and Octopus.

More information on the cluster can be found here.

Paper accepted at Advances in Architectural Geometry Conference

The RCD team have recently had a paper accepted at the AAG Conference, held this year in London on 18th-22nd September. The paper describes the work done by RCD during the Ongreening Pavilion project, constructed in March this year. In the paper, the form-finding process of a bending active shell structure is described, as well as documenting how the assembly method was influenced by real-time structural analysis using Karamba (plug-in for Grasshopper).

More information about the conference can be found here.

Vanke Pavilion Update

RCD and Ramboll Italy have assisted in the geometric tiling of the Vanke Pavilion, by Libeskind Studio for Milan Expo 2015. The pavilion’s doubly curved exterior will be clad in bespoke ceramic tiles of identical size and shape. In order to achieve this, we developed an algorithm similar to the Chebyshev Net approach to generate the layout and minimise the amount of special tiles required.

vanke02

PLANTA

RCD are currently working with KAAN Architecten on PLANTA, a new Art Museum to be situated in Lleida, Spain. The building is a reinforced concrete single storey structure, partially buried underground.

As part of the ongoing design, we produced an optimisation study for the 200x70m concrete waffle roof slab in order to improve its efficiency. A bending stress field informs both the subdivision of an orthogonal waffle layout and the varying of its depth to generate a suitable distribution of structural material.

planta02

planta03

Papworth Trust Timber Shell

The Ramboll UK Cambridge office have constructed a small timber shell for the Papworth Trust, a local charity that works with those who have learning disabilities.

RCD assisted by generating the plate shell geometry, using the planar remeshing method previously seen on the TRADA Pavilion. The method allows doubly curved shells to be constructed with planar elements, utilising the 3-plate principle to allow a hinged connection whilst maintaining the rigidity of the shell.

The shell will remain in place for 3 years.

Papworth01

 

 

 

OBU Rain Pavilion paper accepted for eCAADe 2014

RCD’s work on the intelligent modelling of voids in the stems and canopies of the Oxford Brookes School of Architecture Rain Pavilion has been accepted as a paper to the eCAADe 2014 conference in November. The paper Populating surfaces with holes using particle repulsion based on scalar fields will be presented at the annual gathering at the University of Northumbria and contributes to the overall theme of fusion; data integration at its best.
Details of the conference can be found here

OnGreening Ecobuild 2014 pavilion

The 2014 EcoBuild exhibition at London’s Excel centre opened this week and an egg-shaped plywood pavilion designed for OnGreening’s stand at the event is showcasing the work of Ramboll Computational Design (RCD).

OnGreening is a new web-based platform devoted to the research and profiling of green building technologies. The organisation required a pavilion and lecture theatre that would make them stand out from the crowd at the world’s largest event for sustainable design at the ExCel centre in London.

The look of the structure is intended to echo Ongreening’s goal of capturing and filtering the world’s knowledge of green data. The pavilion has already attracted a lot of attention.

The pavilion’s egg-like geometry was generated using form-finding techniques pioneered on previous RCD projects. The structure itself is unique in that it uses thin 6.5mm birch plywood timber laths which are bent into shape, creating a so-called ‘bending active’ structure which is incredibly stiff and acts like a monocoque, enabling the shell to carry most of the stresses.

The timber laths are aligned along geodesic lines between pre-seeded generation points set out using a parametric model. The primary geodesic members are restrained by secondary laths of the same narrow and thin profile of plywood with a simple bolted connection. This method allowed the use of straight and short length pieces of timber, making it more practical to purchase and build compared with other similar looking structures.

Further details about OnGreening and their work are available on their website.

IMG_5152

Design role on Milan 2015 Expo pavilion

Ramboll Computational Design has been appointed to provide structural and in addition to computational design services on a pavilion to be built in Milan for EXPO 2015. We will work with Studio Daniel Libeskind and VANKE, China’s largest residential developer, to design and build their Pavilion.

By using generative modelling and coding techniques, the computational design team (RCD) digitally sliced and analysed the pavilion’s structural design, as well as providing the panelling geometry for the pavilion’s exterior which will be covered in bespoke ceramic tiles. By digitally rationalising the façade surface, the complex pattern has been optimised to enable it to be realised from identically sized tiles.

The corporate pavilion will be three to four storeys tall. Containing a bamboo structure and Chinese artworks, the pavilion will be dismantled and rebuilt in China after the expo, echoing the sustainability theme of the Italian exposition. Construction will start in May this year ahead of the exposition.

Image: Courtesy of Expo Milano 2015

KREOD recognised at Structural Awards

The KREOD Pavilion has won a coveted Structural Award at the prestigious ceremony at The Brewery in London.  The awards are held annually by the Institution of Structural Engineers (IStructE) to celebrate excellence in structural engineering both in the UK and internationally. The KREOD Pavilion won the Small Project award.

KREOD Pavilion is a sustainable, portable, demountable and multi-functional indoor or outdoor exhibition space that was launched at Peninsular Square near the O2 and Emirates Airline at North Greenwich in London in 2012.  Pavilion Architecture led the project.

KREOD’s organic form is inspired by nature, closely resembling a seed. It sits on castors allowing the structure to be moved and rearranged into different forms. Ramboll’s Computational Design (RCD) team contributed to the conceptual design of the pavilion, helping to translate the concept into a rational and buildable form using high technology and imaginative engineering – a creative design led by constraints on cost and appearance.

The team developed digital design techniques to model and shape the pavilion leading to a more efficient and buildable form.  They also made innovative use of a reciprocal jointing system that can be fully dismantled and flat packed.  The project saw the first use of Kebony a structural element, which required the Computational Design team to embark on a programme of material testing at Cambridge University.
The judging panel praised the KREOD Pavilion for its pioneering approach to creating a functional and demountable enclosure in a striking yet sustainable way:

“Once in a while developing new techniques and processes, coupled with imaginative and perceptive engineering skills, allow the realisation of a design that previously would not have been feasible or financially viable. Though temporary by nature, the KREOD Pavilion is a seminal structure, demonstrating the possibilities of the exoskeletal approach to permanent habitable buildings of the future”.

Presentation – Bartlett Plexus 8

As part of the Bartlett School of Architecture Plexus series of lectures John Harding of the Ramboll Computational Design team spoke about structural form-finding at RCD. The talk focussed on how computation can help to bridge the gap between architecture and engineering at the early stages of projects where there is most to be gained.

The Bartlett Plexus series is an initiative to bring together the creative talent of different disciplines to share techniques, solve problems and build networks of collaboration. The events will happen every other month inviting young designers, architects, engineers, programmers, game designers and visual artists.

For details see here

Indian Toilets

Ramboll Computational Design (RCD) has been selected to design modular toilet buildings for schools throughout India.

The client is a joint venture between a UK-based investor who specialises in funding female entrepreneurs throughout the developing world and NVH Technology, an award-winning entrepreneurial provider of sanitation services in India.

The client plans to expand their range of commercial products into toilet facilities for schools, and has appointed Ramboll to provide design services. The client approached Ramboll Computational Design after seeing RCD’s presentation on the Trada Pavilion, given at the Ecobuild exhibition in London’s Excel Centre earlier this year.

This is an exciting project for Ramboll as it broadens our product design expertise and capabilities in design for mass manufacture. It also provides an opportunity to create a significant beneficial impact on improved sanitation and achieving universal education through improving the standard of school facilities. The United Nations estimates that up to 2.5 billion people worldwide lack access to basic sanitation and reforming this situation is a United Nation’s Millennium Development Goal.

As a commercial venture, Ramboll have worked with the client to develop a unique fee structure which is partially based on royalties gained through the licensing of Ramboll’s intellectual property. Additionally, a custom scope for product design work was prepared and tailored to the client’s particular brief.

John Harding to present Trada pavilion at IASS 2013

John Harding of the RCD team will be presenting our work on the Trada pavilion at the International Associate for Shell and Spatial Structures symposium in Wroclaw, Poland on the 23rd September 2013. The talk, simply titled The TRADA Pavilion – A Timber Plate Funicular Shell will be given as part of the session dedicated to Structural Morphology – Faceted and origami structures.

http://iass2013.pwr.wroc.pl/

 

Photo 23-09-2012 19 56 57_low res

 

Burning Man, Nevada

The Rambøll Computational Design (RCD) team were invited to help design a number of installations at the world-famous Burning Man Festival in Nevada, USA this year by Westminster University School of Architecture.

Burning Man is an annual event held in the Black Rock Desert in northern Nevada. It takes place annually beginning on the last Monday in August, and ending on the first Monday in September to coincide with the Labor Day national holiday. The event takes its name from the ritual burning of a large wooden effigy on the Saturday evening and is described as an experiment in community, art, radical self-expression and radical self-reliance.

The week-long gathering of counter culture takes place in August, giving the team a very tight programme in which to design three climbable sculptures, two recursive ‘fractal’ forms, and a double curved and cantilevering timber shelter, and then help organise their digital fabrication.

In recognition of RCD’s recent experience of collaborative digital modelling of unusual forms, combined with the hands-on production of the Belvedere festival sculpture in New York and Trada Pavilion in the UK, our team were invited by tutors at the Westminster University School of Architecture to assist the student team that won the international design competition earlier this year.

More about the Burning Man Festival is available at the official website.

IStructE awards shortlisting for KREOD

The KREOD Pavilion has secured a place on the 2013 Structural Awards shortlist. The Structural Awards are held annually by the IStructE to celebrate international excellence in structural engineering.  KREOD has been shortlisted for the Small Projects award. The full shortlist can be found on the Structural Awards website.

http://www.istructe.org/structuralawards/2013/the-shortlist/small-projects/kreod-pavilion

20120921-205244.jpg
KREOD Pavilion

Foyer 2.0 Triaxial weave shell

Ramboll Computational Design have conceived and created a weave shell structure from strips of Perspex to transform the foyer of our London studio. The unique doubly-curved triaxial mesh shell installation explores how engineering, digital fabrication, and imagination can fill the boundaries of the space. It inherits the tradition of innovation and material exploration from our 2011 Foyer 1.0 timber principal curvature shell but extends the automatic form finding and associative modelling in new directions. The form has been generated using our self coded dynamic relaxation techniques and the cutting patterns for the flat perspex elements are automatically generated from the Grasshopper model.

The structure will built by early September in time to feature in the London Design Festival 2013.

For more details see here http://www.londondesignfestival.com/events/funnel-20

Creative Installations Event_0081_low res

 

London Festival of Architecture Chalkboard installation

Ramboll engineers have conceived the Fitzrovia Chalkboard for the Great Titchfield Street Festival as part of London Festival of Architecture 2013. One of a number of events planned for the month long festival, the inaugural street project will promote positive change in the area, transforming Great Titchfield Street – from Mortimer Street up to Langham and Foley Street – into a pedestrianised haven for the day.

Fitzrovia Chalkboard is a temporary installation that creates a single point of display for collective messages in the local community – a structure that is a massive writing surface for all to contribute.  It is inspired by how local, independent businesses rely on the traditional chalkboard as a means to advertise and mark their place on the street, in a time when technology offers many alternatives.  Fitzrovia Chalkboard is designed using such recent advances and the public are invited inside the structure to view its innovative construction.

Inspired by Ramboll’s recent Trada Pavillion, the structure comprises of 47 birch plywood panels joined together by steel hinges.  It is designed using the Tangent Plane Intersection (TPI) methods developed by Ramboll Computational Design to break down any double curved form into flat planar elements.  Exact cutting patterns for digital fabrication are then automatically generated from the TPI mesh.  All panels are numbered sequentially and this approach ensures that all panels fit together to create the form in a quick assembly process.

 

LFA_2_low res

http://www.londonfestivalofarchitecture.org/

KREOD shortlisted for a BCI Award

Our KREOD proejct has been shortlisted for the BCI (British Construction Industry) awards in the Product Design/Innovation category. We are extremely pleased and congratulations to our collaborators Pavilion Architecture without whose vision and tenacity the project would not have moved forward in the way it did. The awards are announced on the 9th October at the Grosvenor House Hotel, London.

Oxford Brookes Forum sculpture

Working in collaboration with the staff and students of Oxford Brookes School of Architecture we are prototyping the new Forum sculpture, a 4metres high by 25metres long installation which is  to be built within the courtyard of the new Abercrombe building. The structure is to be a series of aluminium plate boxes following the lines of principal curvature along a looping form. By breaking down the surface in this way we are able to simplify the geometry into simple elements folded out of a flat planar shape. More development is needed, particularly of the joints, but we are encouraged by the behaviour so far. The Forum sculpture will be built early Autumn 2013.

RCD talk at Building Envelopes Asia

Duncan Horswill and Mark Pniewski represented Ramboll Computational Design at the 4th Annual Building Envelopes Asia conference in Singapore on the 17th and 18th April.

The conference is in its fourth year and brings together 25 world class speakers to discuss cost efficient design as well as engineering and material technologies for high performance building envelopes.
Together Duncan and Mark used the work of the team to demonstrate the advantages of a computational approach to the design of complex glass envelopes. The presentation drew on our experience of working with complex architectural geometries on projects such as the Astana National Library in Kazakhstan and the National Holdings HQ building in Abu Dhabi to demonstrate the inherent issues with the application of traditional facade solutions to complex surfaces and how, with the help of computation, we can meet these challenges.

As well as the above case studies we will be presented our latest research which has been developed over the past four years in collaboration with the University of Bath, the EPSRC and AG5 Architects in Copenhagen to develop a digital design strategy which allows the designer to experiment with novel form whilst retaining an underlying engineering and construction logic. This work is at the cutting edge of its field and combines dynamic 3D modelling with genetic programming and analytical tools to create a virtual environment where building forms evolve from the bottom up as a result of the requirements of the designers, client and site.

Searching for Innovation and Elegance in Complex Forms paper presented at Prototyping Architecture 2013

Harri Lewis and Stephen Melville of the Ramboll Computational Design team presented their paper ‘ TRADA Pavilion – Searching for Innovation and Elegance in Complex Forms Supported by Physical and Software Prototyping’ (authors Harri Lewis, Stephen Melville and John Harding) at the the Prototyping Architecture conference at the Building Centre, London. An e-book of the conference papers can be downloaded here

KREOD wins best temporary structure at the Surface Design Awards

The KREOD, a temporary exhibition space designed by Pavilion Architecture and Ramboll Computational Design, has won the best temporary structure at the 2013 Surface Design Awards.

The Surface Design Awards recognise progressive design and the use of innovative surfaces in design projects, both in the UK and internationally. The awards also highlight the wealth of creativity and innovation in the industry.

KREOD is a sustainable, portable, demountable and multi-functional indoor or outdoor exhibition space. The project was led by Pavilion Architecture with its organic form inspired by nature, resembling a seed.
The structure sits on castors, allowing the structure to be moved and rearranged into different forms and spaces to create a versatile event space with practical considerations for transportation, storage, disassembly and reassembly.

The structure is made up of three reciprocal timber gridshells that implement a number of geometrical optimisation and fabrication algorithms that have not been previously applied to a real structure. The form is a creative response to the need for a building that can be easily erected and subsequently demounted by hand, uses Kebony timber – a previously untried material – of a given size and limited thickness, and had to be delivered within a strict budget.

Using digital technology to its fullest, KREOD was delivered in a collaborative manner with each member of the design team understanding the innovative work and challenges of the other contributors and designed accordingly.

The awards were presented at the Surface Design Show, which took place at London’s Business Design Centre.

Belvedere Vodka RED sculpture

Rambøll Computational Design (RCD) and artists Loop.ph have completed the design and erection of a 6m tall carbon fibre and perspex arch structure for Belvedere Vodka’s RED street party in New York, USA.

Taking over Manhattan’s Meatpacking district with a dramatic light show and music, the event was a one of a number of international celebrations in the run up to World AIDS Day on 1st December. World AIDS Day was first ever global health day, providing an opportunity to unite in the fight against HIV, show support for people living with it and commemorate those who have died from the disease.

Guests watched the area become illuminated in red against a backdrop of 20ft white neon trees to helpBelvedere Vodka and (RED)™ raise awareness of the campaign to eliminate the transmission of the HIV virus from mothers to their babies and achieve the first AIDS-free generation born by 2015.

The teams worked intensively for a month and collaborated on parametric 3d models in order to develop a form initially based on a flat pattern of 85 number, thin carbon fibre rods which was then warped and twisted to give the shape a natural stiffness. Perspex ribs linked the carbon rods together to ensure that the sculpture acts as coherent entity. The carbon fibre rods acted as natural conductors powering LED lights fixed in the corporate logo of Belvedere Vodka. Rambøll Computational Design provided structural engineering, 3d modelling, construction advice and practical assistance.

Just an hour before the production deadline, the Loop.ph and RCD teams finished assembling the structure and were able to pivot it into its final position. Shortly afterwards the New York public filled the square off Gansevoort and Hudson Street, milling around and under the arch, for a set by electro-funk DJs Chromeo to promote the cause.

20121203-205930.jpg

20121203-205946.jpg

20121203-205953.jpg

Trada pavilion exhibited at the Prototyping Architecture Exhibition 2012

A full size trial erection of one of the plywood timber legs of the Trada Expo pavilion will be exhibited at the Prototyping Architecture Exhibition in Nottingham starting 17th October.

The trial was undertaken to test the stiffness of the reciprocal support panels, the ease of erection, quality of finish and the effect of adding edge stiffeners upon the overall performance of the structure under accidental load. It proved an extremely useful exercise, validating the time and effort expended in ordering and building the test leg. It will be accompanied in the exhibition by a 1:10 scale model of the pavilion, built to assess the potential modes of failure.

Details of the exhibition can be found here

20121127-181340.jpg

Trada pavilion – planar hexagonal mesh

Our pavilion for Trada is progressing with a deadline of 11 weeks until it has to be built and ready to receive the public. The structure is proving to be incredibly complex for an installation of only 6m by 8m on plan and made even more challenging due to the decision to adopt a planar hexagonal mesh for the double curved surface rather than the conventional triangular mesh. A hexagonal mesh has the advantage of fewer connections and greater structural efficiency but has required coding from scratch and a great deal of research. The final design uses techniques from the computer game industry coupled with a great deal of engineering intuition.

D_pod pavilion joint passes test

The D_pod pavilion took a step closer to reality recently with the completion of the joint testing at Cambridge University. The pavilion has changed a great deal since the first iteration back in 2010. The mesh is hexagonal rather than quadrilateral meaning a different approach has been needed to the engineering of the joints in order to keep them cheap, to use the material on hand and to give them a ‘furniture like’ appearance. RCD specified a reciprocal joint fixed with hidden bolts, which because the Kebony timber was being used for the first time in a load-bearing structure had to be validated by testing. After several tweaks to the detailing we are glad to report that the connections performed as hoped and it’s straight into construction in time for the opening at the Greenwich Olympic site in June.

Structuring Architecture at Oxford Brookes University

As part of his role as a part time Structural Engineering tutor at Oxford Brookes School of Architecture, Stephen Melville will be giving a lecture on Thursday 2nd February on the subject ‘Structuring Architecture’. This is a great opportunity to help convey the principles of collaboration and critical thought in the overlapping space of Architectural Design and Engineering Optimisation.

Computational Design Lecture at TU Delft

Stephen Melville recently gave a lecture to the Architectural faculty of the Technical University of Delft on Computational Design and the practical application of the RCD team’s on-going research to live projects and future directions such as urbanism. The lecture was at the invitation of the high rise unit of the school.

20120118-095522.jpg