Computational Design

2012/01/04

Presidential Library Astana

By

Please login or register to   "follow" this blogger.

highlyOptimised_001.jpg 2001×1258 pixels

An algorithm inspired by electrical behaviour of sub-atomic particles rationalises a complex facade

 

Both archive and museum, the National Library will be a place for work and study, as well as education and tourism. A place for progress and a place for pleasure. As a national concentration of knowledge about the Kazakh culture and history, geography and demographics, government and presidency, the National Library will be a place for the people to learn about the president, as well as a forum for the president to meet with the people.

The initial scheme for the façade of the new Presential Library envisaged a triangulated diagrid of steel members set out in the form of a Möbius strip. If a ‘traditional’ rectilinear grid pattern were to be adopted for the setting out of the cladding panels then every panel and member length would be different making the façade package extremely expensive. The engineers’ challenge was to refine this complex and expansive steel façade structure to make it simpler and less costly to construct.

By applying an optimisation routine based on the theory of electrical repulsion engineers were able to refine the design so more panels were the same area and more supporting members were the same length.

The engineers created an algorithmic software script that ascribed to each nodal point in the facade a simulated electrical charge. Following the principle of electric repulsion, the nodes ‘repelled’ each other until they were evenly distributed, thus creating steel members of a standardised length.

A second algorithm was then used to push nodes towards areas of high stress, thus tuning the structure to the forces flowing within it, making it more structurally efficient.

 

 

Please login or register to   "like" this page.

Send to a friend

Click here to read more posts by rcd