Design role on Milan 2015 Expo pavilion

Ramboll Computational Design has been appointed to provide structural and in addition to computational design services on a pavilion to be built in Milan for EXPO 2015. We will work with Studio Daniel Libeskind and VANKE, China’s largest residential developer, to design and build their Pavilion.

By using generative modelling and coding techniques, the computational design team (RCD) digitally sliced and analysed the pavilion’s structural design, as well as providing the panelling geometry for the pavilion’s exterior which will be covered in bespoke ceramic tiles. By digitally rationalising the façade surface, the complex pattern has been optimised to enable it to be realised from identically sized tiles.

The corporate pavilion will be three to four storeys tall. Containing a bamboo structure and Chinese artworks, the pavilion will be dismantled and rebuilt in China after the expo, echoing the sustainability theme of the Italian exposition. Construction will start in May this year ahead of the exposition.

Image: Courtesy of Expo Milano 2015

Oxford Brookes Rain Pavilion

RCD have collaborated with the staff and students of the Architecture and Fine Arts departments at Oxford Brookes University on a striking new urban intervention/sculptural pavilion at the entrance of the new Abercrombie building. The structure compromises 20 extremely tall and slender steel ‘trees’ that support a thin folded steel plate ‘leaf’ or canopy. The overall impression is that of a wooded glade where light is filtered through varying diameter circular voids in the canopies and the stems bathing the visitors to the installation in a dappled light. RCD were an integral part of the conceptual design process following the initial student competition.

The extreme slenderness of the stems (only 89mm diameter and 6000mm tall) required extensive input from Ramboll’s fluid dynamics team in Copenhagen and fatigue analysis by our Advanced Engineering team in Southampton to model the complex wind interactions in order to prevent dynamic failure and to keep the structure as slim as possible. The canopies are 2500mm at their widest but only need very thin steel plate (2mm) because of the inherent stiffness provided by folds and creases in the form.

We developed routines to allow the circular voids to intelligently self organize on the surface of the stems and canopies in relation to the level of stress. High stress in a particular area meant that voids were fewer in number. Dampening factors were built into the initial coding to ensure that the overall impression of the holes was a gradual fading rather than unsightly bunching. The work will be extended to include our work on integrating a lightweight finite element solver within the automatic void generation and movement process in order to give more control and instant feedback on structural performance. A technical paper will be presented at a future paper conference.

Dist_Final_Analysis

Indian Toilets

Ramboll Computational Design (RCD) has been selected to design modular toilet buildings for schools throughout India.

The client is a joint venture between a UK-based investor who specialises in funding female entrepreneurs throughout the developing world and NVH Technology, an award-winning entrepreneurial provider of sanitation services in India.

The client plans to expand their range of commercial products into toilet facilities for schools, and has appointed Ramboll to provide design services. The client approached Ramboll Computational Design after seeing RCD’s presentation on the Trada Pavilion, given at the Ecobuild exhibition in London’s Excel Centre earlier this year.

This is an exciting project for Ramboll as it broadens our product design expertise and capabilities in design for mass manufacture. It also provides an opportunity to create a significant beneficial impact on improved sanitation and achieving universal education through improving the standard of school facilities. The United Nations estimates that up to 2.5 billion people worldwide lack access to basic sanitation and reforming this situation is a United Nation’s Millennium Development Goal.

As a commercial venture, Ramboll have worked with the client to develop a unique fee structure which is partially based on royalties gained through the licensing of Ramboll’s intellectual property. Additionally, a custom scope for product design work was prepared and tailored to the client’s particular brief.

Burning Man, Nevada

The Rambøll Computational Design (RCD) team were invited to help design a number of installations at the world-famous Burning Man Festival in Nevada, USA this year by Westminster University School of Architecture.

Burning Man is an annual event held in the Black Rock Desert in northern Nevada. It takes place annually beginning on the last Monday in August, and ending on the first Monday in September to coincide with the Labor Day national holiday. The event takes its name from the ritual burning of a large wooden effigy on the Saturday evening and is described as an experiment in community, art, radical self-expression and radical self-reliance.

The week-long gathering of counter culture takes place in August, giving the team a very tight programme in which to design three climbable sculptures, two recursive ‘fractal’ forms, and a double curved and cantilevering timber shelter, and then help organise their digital fabrication.

In recognition of RCD’s recent experience of collaborative digital modelling of unusual forms, combined with the hands-on production of the Belvedere festival sculpture in New York and Trada Pavilion in the UK, our team were invited by tutors at the Westminster University School of Architecture to assist the student team that won the international design competition earlier this year.

More about the Burning Man Festival is available at the official website.

KREOD wins best temporary structure at the Surface Design Awards

The KREOD, a temporary exhibition space designed by Pavilion Architecture and Ramboll Computational Design, has won the best temporary structure at the 2013 Surface Design Awards.

The Surface Design Awards recognise progressive design and the use of innovative surfaces in design projects, both in the UK and internationally. The awards also highlight the wealth of creativity and innovation in the industry.

KREOD is a sustainable, portable, demountable and multi-functional indoor or outdoor exhibition space. The project was led by Pavilion Architecture with its organic form inspired by nature, resembling a seed.
The structure sits on castors, allowing the structure to be moved and rearranged into different forms and spaces to create a versatile event space with practical considerations for transportation, storage, disassembly and reassembly.

The structure is made up of three reciprocal timber gridshells that implement a number of geometrical optimisation and fabrication algorithms that have not been previously applied to a real structure. The form is a creative response to the need for a building that can be easily erected and subsequently demounted by hand, uses Kebony timber – a previously untried material – of a given size and limited thickness, and had to be delivered within a strict budget.

Using digital technology to its fullest, KREOD was delivered in a collaborative manner with each member of the design team understanding the innovative work and challenges of the other contributors and designed accordingly.

The awards were presented at the Surface Design Show, which took place at London’s Business Design Centre.

Tetra Shed

Working with Architects Innovation Imperative, Ramboll Computation Design have helped with digital fabrication advice and structural analysis of a small and potentially adaptable ‘garden office’. Tetra Shed is a free standing single-storey timber structure designed to create an architecturally striking and comfortable space that can be internally adapted to suit the unique requirements of every client whilst maintaining the same structure. Expected uses are as a home office, extended living space or commercial applications.

The structural frame builds upon the expertise Ramboll Computational Design have developed in the CNC fabrication and jointing of thin ply sections on the London Funnel and Trada Pavilion projects

For details of the Tetra Shed see here